Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nutrition ; 122: 112371, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38430843

RESUMO

OBJECTIVE: To deepen the understanding of the influence of diet on weight gain and metabolic disturbances, we examined associations between diet-related inflammation and body composition and fecal bacteria abundances in participants of the Nutritionists' Health Study. METHODS: Early-life, dietary and clinical data were obtained from 114 women aged ≤45 years. A validated food frequency questionnaire was used to calculate the energy-adjusted dietary inflammatory index (E-DII). Participants' data were compared by E-DII quartiles using ANOVA or Kruskal-Wallis. Associations of DXA-determined body composition with the E-DII were tested by multiple linear regression using DAG-oriented adjustments. Fecal microbiota was analyzed targeting the V4 region of the 16S rRNA gene. Spearman correlation coefficients were used to test linear associations; differential abundance of genera across the E-DII quartiles was assessed by pair-wise comparisons. RESULTS: E-DII score was associated with total fat (b=1.80, p<0.001), FMI (b=0.08, p<0.001) and visceral fat (b=1.19, p=0.02), independently of maternal BMI, birth type and breastfeeding. E-DII score was directly correlated to HOMA-IR (r=0.30; p=0.004), C-reactive protein (r=0.29; p=0.003) and to the abundance of Actinomyces, and inversely correlated to the abundance of Eubacterium.xylanophilum.group. Actinomyces were significantly more abundant in the highest (most proinflammatory) E-DII quartile. CONCLUSIONS: Association of E-DII with markers of insulin resistance, inflammation, body adiposity and certain gut bacteria are consistent with beneficial effects of anti-inflammatory diet on body composition and metabolic profile. Bacterial markers, such as Actinomyces, could be involved in the association between the dietary inflammation with visceral adiposity. Studies designed to explore how a pro-inflammatory diet affects both central fat deposition and gut microbiota are needed.


Assuntos
Adiposidade , Microbioma Gastrointestinal , Humanos , Feminino , RNA Ribossômico 16S/metabolismo , Dieta , Inflamação/metabolismo , Obesidade Abdominal/complicações , Bactérias/metabolismo
2.
Gut Microbes ; 16(1): 2297815, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38235595

RESUMO

Gut microbiota has been implicated in various clinical conditions, yet the substantial heterogeneity in gut microbiota research results necessitates a more sophisticated approach than merely identifying statistically different microbial taxa between healthy and unhealthy individuals. Our study seeks to not only select microbial taxa but also explore their synergy with phenotypic host variables to develop novel predictive models for specific clinical conditions. DESIGN: We assessed 50 healthy and 152 unhealthy individuals for phenotypic variables (PV) and gut microbiota (GM) composition by 16S rRNA gene sequencing. The entire modeling process was conducted in the R environment using the Random Forest algorithm. Model performance was assessed through ROC curve construction. RESULTS: We evaluated 52 bacterial taxa and pre-selected PV (p < 0.05) for their contribution to the final models. Across all diseases, the models achieved their best performance when GM and PV data were integrated. Notably, the integrated predictive models demonstrated exceptional performance for rheumatoid arthritis (AUC = 88.03%), type 2 diabetes (AUC = 96.96%), systemic lupus erythematosus (AUC = 98.4%), and type 1 diabetes (AUC = 86.19%). CONCLUSION: Our findings underscore that the selection of bacterial taxa based solely on differences in relative abundance between groups is insufficient to serve as clinical markers. Machine learning techniques are essential for mitigating the considerable variability observed within gut microbiota. In our study, the use of microbial taxa alone exhibited limited predictive power for health outcomes, while the integration of phenotypic variables into predictive models substantially enhanced their predictive capabilities.


What is Already Known on this Subject? While the gut microbiota has been implicated as potential signatures or biomarkers for various clinical conditions, the establishment of causality in humans remains largely elusive.The role of the gut microbiota in maintaining the host organism's proper physiological function is well-established, yet data regarding the composition of the gut microbiota in disease states often suffer from poor reproducibility.What Are the New Findings? Our study demonstrates that relying solely on differences in the relative abundance of bacterial taxa between groups falls short as a means of identifying clinical markers.We advocate the use of robust statistical tools, such as bootstrapping, to mitigate the substantial variability observed in gut microbiota studies, thereby enhancing the reproducibility of research findings.Our findings underscore the limited predictive power of microbial taxa in isolation for health outcomes.The integration of phenotypic variables into predictive models with gut microbiota significantly augments the ability to predict health outcomes.How This Study Might Advance Research Despite the growing enthusiasm for using gut microbiota as biomarkers for various clinical conditions, the lack of standardization throughout the research process impedes progress in this field.Our study emphasizes the necessity of rigorously testing predictions of clinical conditions based on gut microbiota using bootstrapping techniques, promoting greater reproducibility in research findings.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Biomarcadores
3.
Int Microbiol ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37759067

RESUMO

The present study compared bacterial and fungal diversity of kefir beverages produced using milk (MK) or sugared water (WK) as propagation matrices and grains from the cities of Curitiba (CU) or Salvador (SA), Brazil, by sequencing the complete set of RNA transcripts produced in four products. In Brazil, milk and sugared water are used as matrices to propagate kefir grains. In all beverages, the bacterial community was composed of Lactobacillaceae and Acetobacteraceae. Saccharomycetaceae was the yeast family more abundant in WK, and Dipodascaceae and Pichiaceae in MK. Regarding KEGG mapping of functional orthologs, the four kefir samples shared 70% of KO entries of yeast genes but only 36% of bacterial genes. Concerning main metabolic processes, the relative abundance of transcripts associated with metabolism (energy metabolism) and environmental information processing (membrane transport) had the highest water/milk kefir ratio observed in Firmicutes. In contrast, transcripts associated with genetic information processing (protein translation, folding, sorting, and degradation) oppositely had the lowest water/milk ratios. Concluding, milk and water kefir have quite different communities of microorganisms. Still, the main mapped functional processes are similar, with only quantitative variation in membrane transport and energy acquisition in the water kefir and protein synthesis and turnover in the milk kefir.

4.
Gene ; 884: 147742, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37634882

RESUMO

BACKGROUND: Schistosomiasis is a neglected tropical disease caused by Schistosoma and affects over 240 million people worldwide. One of the most prominent causative agents is Schistosoma mansoni, which develops inside the intermediate host. Biomphalaria tenagophila is the second most important vector of schistosomiasis in Brazil and the Taim population is completely resistant to infection by S. mansoni. OBJECTIVE: This study aims to identify and characterize B. tenagophila microRNAs (miRNAs) and evaluate their differential expression in S. mansoni-susceptible and -resistant populations of B. tenagophila. METHODS: Two populations of B. tenagophila snails, susceptible and resistant to S. mansoni infection, were used to investigate the small RNA response of these snails after being infected with the parasite. Small RNA sequencing and quantitative real-time PCR were employed to identify and validate differentially expressed miRNAs. Bioinformatics analysis were performed to identify miRNA precursors and mature and evaluate their differential expression. FINDINGS: The study predicted 173 mature miRNAs and 123 precursors. Among them were six Lophotrochozoa-specific miRNAs, three mollusk-specific miRNAs, and six pre-miRNAs in a cluster. The small RNA sequencing and RT-PCR of B. tenagophila samples allowed assessing the expression patterns of miRNAs. MAIN CONCLUSIONS: The results obtained may support future studies in Biomphalaria spp., generating a global impact on disease control.


Assuntos
Biomphalaria , MicroRNAs , Humanos , Animais , Biomphalaria/genética , MicroRNAs/genética , Schistosoma mansoni/genética , Brasil , Biologia Computacional
5.
Sci Rep ; 13(1): 5147, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991089

RESUMO

Stingless bees are a diverse group with a relevant role in pollinating native species. Its diet is rich in carbohydrates and proteins, by collecting pollen and nectar supplies the development of its offspring. Fermentation of these products is associated with microorganisms in the colony. However, the composition of microorganisms that comprise this microbiome and its fundamental role in colony development is still unclear. To characterize the colonizing microorganisms of larval food in the brood cells of stingless bees Frieseomelitta varia, Melipona quadrifasciata, Melipona scutellaris, and Tetragonisca angustula, we have utilized molecular and culture-based techniques. Bacteria of the phyla Firmicutes, Proteobacteria, Actinobacteria, and fungi of the phyla Ascomycota, Basidiomycota, Mucoromycota, and Mortierellomycota were found. Diversity analysis showed that F. varia had a greater diversity of bacteria in its microbiota, and T. angustula had a greater diversity of fungi. The isolation technique allowed the identification of 189 bacteria and 75 fungi. In summary, this research showed bacteria and fungi associated with the species F. varia, M. quadrifasciata, M. scutellaris, and T. angustula, which may play an essential role in the survival of these organisms. Besides that, a biobank with bacteria and fungus isolates from LF of Brazilian stingless bees was created, which can be used for different studies and the prospection of biotechnology compounds.


Assuntos
Fungos , Leveduras , Abelhas , Animais , Larva , Brasil , Fungos/genética , Bactérias/genética
6.
J Fungi (Basel) ; 9(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36983449

RESUMO

Zinc is one of the main micronutrients for all organisms. One of the defense mechanisms used by the host includes the sequestration of metals used in fungal metabolism, such as iron and zinc. There are several mechanisms that maintain the balance in the intracellular zinc supply. MicroRNAs are effector molecules of responses between the pathogen and host, favoring or preventing infection in many microorganisms. Fungi of the Paracoccidioides genus are thermodimorphic and the etiological agents of paracoccidioidomycosis (PCM). In the current pandemic scenario world mycosis studies continue to be highly important since a significant number of patients with COVID-19 developed systemic mycoses, co-infections that complicated their clinical condition. The objective was to identify transcriptomic and proteomic adaptations in Paracoccidioides brasiliensis during zinc deprivation. Nineteen microRNAs were identified, three of which were differentially regulated. Target genes regulated by those microRNAs are elements of zinc homeostasis such as ZRT1, ZRT3 and COT1 transporters. Transcription factors that have zinc in their structure are also targets of those miRNAs. Transcriptional and proteomic data suggest that P. brasiliensis undergoes metabolic remodeling to survive zinc deprivation and that miRNAs may be part of the regulatory process.

8.
Commun Med (Lond) ; 2: 76, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784447

RESUMO

Background: The emergence of the new SARS-CoV-2 Omicron variant, which is known to have a large number of mutations when compared to other variants, brought to light the concern about vaccine escape, especially from the neutralization by antibodies induced by vaccination. Methods: Based on viral microneutralization assays, we evaluated in 90 individuals the impact on antibody neutralization induction, against Omicron variant, by a booster dose of BNT162b2 mRNA vaccine after the CoronaVac primary vaccination scheme. Results: Here we show that the percentage of seroconverted individuals 30 and 60 days after CoronaVac scheme was 16.6% and 10%, respectively. After booster dose administration, the seroconvertion rate increased to 76.6%. The neutralization mean titer against Omicron in the CoronaVac protocol decreased over time, but after the booster dose, the mean titer increased 43.1 times. Conclusions: These results indicate a positive impact of this vaccine combination in the serological immune response against SARS-CoV-2 Omicron variant.

9.
PLoS Negl Trop Dis ; 16(6): e0010060, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35767570

RESUMO

BACKGROUND: Triatoma infestans is the main vector of Chagas disease in the Southern Cone. The resistance to pyrethroid insecticides developed by populations of this species impairs the effectiveness of vector control campaigns in wide regions of Argentina. The study of the global transcriptomic response to pyrethroid insecticides is important to deepen the knowledge about detoxification in triatomines. METHODOLOGY AND FINDINGS: We used RNA-Seq to explore the early transcriptomic response after intoxication with deltamethrin in a population of T. infestans which presents low resistance to pyrethroids. We were able to assemble a complete transcriptome of this vector and found evidence of differentially expressed genes belonging to diverse families such as chemosensory and odorant-binding proteins, ABC transporters and heat-shock proteins. Moreover, genes related to transcription and translation, energetic metabolism and cuticle rearrangements were also modulated. Finally, we characterized the repertoire of previously uncharacterized detoxification-related gene families in T. infestans and Rhodnius prolixus. CONCLUSIONS AND SIGNIFICANCE: Our work contributes to the understanding of the detoxification response in vectors of Chagas disease. Given the absence of an annotated genome from T. infestans, the analysis presented here constitutes a resource for molecular and physiological studies in this species. The results increase the knowledge on detoxification processes in vectors of Chagas disease, and provide relevant information to explore undescribed potential insecticide resistance mechanisms in populations of these insects.


Assuntos
Doença de Chagas , Inseticidas , Piretrinas , Triatoma , Animais , Resistência a Inseticidas/genética , Inseticidas/metabolismo , Inseticidas/farmacologia , Nitrilas/metabolismo , Piretrinas/metabolismo , Piretrinas/farmacologia , Transcriptoma
10.
medRxiv ; 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35350193

RESUMO

The emergence of the new SARS-CoV-2 Omicron variant, which is known to accumulate a huge number of mutations when compared to other variants, brought to light the concern about vaccine escape, especially from the neutralization by antibodies induced by vaccination. In this scenario, we evaluated the impact on antibody neutralization induction, against Omicron variant, by a booster dose of BNT162b2 mRNA vaccine after the CoronaVac primary vaccination scheme. The percentage of seroconverted individuals 30 and 60 days after CoronaVac scheme was 17% and 10%, respectively. After booster dose administration, the seroconvertion rate increased to 76.6%. The neutralization mean titer against Omicron in the CoronaVac protocol decreased over time, but after the booster dose, the mean titer increased 43.1 times, indicating a positive impact of this vaccine combination in the serological immune response.

11.
Environ Sci Pollut Res Int ; 29(24): 36088-36099, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35060061

RESUMO

Wastewater tertiary treatment has been pointed out as an effective alternative for reducing the concentration of antibiotic resistant bacteria and genes (ARB and ARGs) in wastewaters. The present work aimed to build on the current knowledge about the effects of activated sludge and UV irradiation on antibiotic resistance determinants in biologically treated wastewaters. For that, the microbial community and ARGs' composition of samples collected after preliminary (APT), secondary (AST), and tertiary (ATT) treatments in a full-scale wastewater treatment plant using a modified activated sludge (MAS) system followed by an UV stage (16 mJ/cm2) were investigated through culture-dependent and independent approaches (including metagenomics). A total of 24 phyla and 460 genera were identified, with predominance of Gammaproteobacteria in all samples. Pathogenic genera corresponded to 8.6% of all sequences on average, mainly Acinetobacter and Streptococcus. Significant differences (p < 0.05) in the proportion of pathogens were observed between APT and the other samples, suggesting that the secondary treatment reduced its abundance. The MAS achieved 64.0-99.7% average removal efficiency for total (THB) and resistant heterotrophic bacteria, although the proportions of ARB/THB have increased for sulfamethoxazole, cephalexin, ciprofloxacin, and tetracycline. A total of 107 copies/mL of intI1 gene remained in the final effluent, suggesting that the treatment did not significantly remove this gene and possibly other ARGs. In accordance, metagenomic results suggested that number of reads recruited to plasmid-associated ARGs became more abundant in the pool throughout the treatment, suggesting that it affected more the bacteria without these ARGs than those with it. In conclusion, disinfected effluents are still a potential source for ARB and ARGs, which highlights the importance to investigate ways to mitigate their release into the environment.


Assuntos
Esgotos , Purificação da Água , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos/farmacologia , Bactérias/genética , Desinfecção , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Esgotos/microbiologia , Águas Residuárias/microbiologia
12.
Insect Biochem Mol Biol ; 140: 103704, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34942331

RESUMO

Triatomine bugs are the blood feeding insect vectors transmitting Chagas disease to humans, a neglected tropical disease that affects over 8 million people, mainly in Latin America. The behavioral responses to host cues and bug signals in Rhodnius prolixus are state dependent, i.e., they vary as a function of post-ecdysis age. At the molecular level, these changes in behavior are probably due to a modulation of peripheral and central processes. In the present study, we report a significant modulation of the expression of a large set of sensory-related genes. Results were generated by means of antennal transcriptomes of 5th instar larvae along the first week (days 0, 2, 4, 6 and 8) after ecdysis sequenced using the Illumina HiSeq platform. Significant age-induced changes in transcript abundance were established for more than 6120 genes (54,7% of 11,186 genes expressed) in the antenna of R. prolixus. This was especially true between the first two days after ecdysis when more than 2500 genes had their expression significantly altered. In contrast, expression profiles were almost identical between day 6 and 8, with only a few genes showing significant modulation of their expression. A total of 86 sensory receptors, odorant carriers and odorant degrading enzymes were significantly modulated across age points and clustered into three distinct expression profiles. The set of sensory genes whose expression increased with age (profile 3) may include candidates underlying the increased responsiveness to host cues shown by R. prolixus during the first days after molting. For the first time, we describe the maturation process undergone at the molecular level by the peripheral sensory system of a hemimetabolous insect.


Assuntos
Antenas de Artrópodes , Genes de Insetos , Rhodnius , Órgãos dos Sentidos , Animais , Doença de Chagas/transmissão , Perfilação da Expressão Gênica , Insetos Vetores/genética , Insetos Vetores/metabolismo , Larva/genética , Larva/metabolismo , Odorantes , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Rhodnius/genética , Rhodnius/metabolismo , Órgãos dos Sentidos/embriologia , Órgãos dos Sentidos/fisiologia , Olfato/genética , Transcriptoma
13.
Microb Ecol ; 81(1): 169-179, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32617619

RESUMO

Metagenomic studies revealed the prevalence of Acidobacteria in soils, but the physiological and ecological reasons for their success are not well understood. Many Acidobacteria exhibit carotenoid-related pigments, which may be involved in their tolerance of environmental stress. The aim of this work was to investigate the role of the orange pigments produced by Acidobacteria strain AB23 isolated from a savannah-like soil and to identify putative carotenoid genes in Acidobacteria genomes. Phylogenetic analysis revealed that strain AB23 belongs to the Occallatibacter genus from the class Acidobacteriia (subdivision 1). Strain AB23 produced carotenoids in the presence of light and vitamins; however, the growth rate and biomass decreased when cells were exposed to light. The presence of carotenoids resulted in tolerance to hydrogen peroxide. Comparative genomics revealed that all members of Acidobacteriia with available genomes possess the complete gene cluster for phytoene production. Some Acidobacteriia members have an additional gene cluster that may be involved in the production of colored carotenoids. Both colored and colorless carotenoids are involved in tolerance to oxidative stress. These results show that the presence of carotenoid genes is widespread among Acidobacteriia. Light and atmospheric oxygen stimulate carotenoid synthesis, but there are other natural sources of oxidative stress in soils. Tolerance to environmental oxidative stress provided by carotenoids may offer a competitive advantage for Acidobacteria in soils.


Assuntos
Acidobacteria/genética , Acidobacteria/metabolismo , Farmacorresistência Bacteriana/genética , Peróxido de Hidrogênio/toxicidade , Estresse Oxidativo/fisiologia , Acidobacteria/efeitos dos fármacos , Acidobacteria/isolamento & purificação , Carotenoides/metabolismo , DNA Bacteriano/genética , Genoma Bacteriano/genética , Família Multigênica/genética , Solo/química , Microbiologia do Solo
14.
Water Res ; 174: 115630, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32105997

RESUMO

Aquatic ecosystems harbor a vast pool of antibiotic resistance genes (ARGs), which can suffer mutation, recombination and selection events. Here, we explored the diversity of ARGs, virulence factors and the bacterial community composition in water samples before (surface raw water, RW) and after (disinfected water, DW) drinking water conventional treatment, as well as in tap water (TW) and ultrafiltration membranes (UM, recovered from hemodialysis equipment) through metagenomics. A total of 852 different ARGs were identified, 21.8% of them only in RW, which might reflect the impact of human activities on the river at the sampling point. Although a similar resistance profile has been observed between the samples, significant differences in the frequency of clinically relevant antibiotic classes (penam and peptide) were identified. Resistance determinants to last resort antibiotics, including sequences related to mcr, optrA and poxtA and clinically relevant beta-lactamase genes (i.e. blaKPC, blaGES, blaIMP, blaVIM, blaSPM and blaNDM) were detected. 830 coding sequences (CDSs - related to 217 different ARGs) were embedded in contigs associated with mobile genetic elements, specially plasmids, of which 68% in RW, DW and TW, suggesting the importance of water environments in resistance dissemination. Shifts in bacterial pathogens genera were observed, such as a significant increase in Mycobacterium after treatment and distribution. In UM, the potentially pathogenic genus Halomonas predominated. Its draft genome was closely related to H. stevensii, hosting mainly multidrug efflux pumps. These results broaden our understanding of the global ARGs diversity and stress the importance of tracking the ever-expanding environmental resistome.


Assuntos
Água Potável , Microbiota , Antibacterianos , Resistência Microbiana a Medicamentos , Genes Bacterianos , Humanos , Metagenômica
15.
Int J Genomics ; 2018: 1062716, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29888247

RESUMO

Members of the genus Chromobacterium have been isolated from geographically diverse ecosystems and exhibit considerable metabolic flexibility, as well as biotechnological and pathogenic properties in some species. This study reports the draft assembly and detailed sequence analysis of Chromobacterium amazonense strain 56AF. The de novo-assembled genome is 4,556,707 bp in size and contains 4294 protein-coding and 95 RNA genes, including 88 tRNA, six rRNA, and one tmRNA operon. A repertoire of genes implicated in virulence, for example, hemolysin, hemolytic enterotoxins, colicin V, lytic proteins, and Nudix hydrolases, is present. The genome also contains a collection of genes of biotechnological interest, including esterases, lipase, auxins, chitinases, phytoene synthase and phytoene desaturase, polyhydroxyalkanoates, violacein, plastocyanin/azurin, and detoxifying compounds. Importantly, unlike other Chromobacterium species, the 56AF genome contains genes for pore-forming toxin alpha-hemolysin, a type IV secretion system, among others. The analysis of the C. amazonense strain 56AF genome reveals the versatility, adaptability, and biotechnological potential of this bacterium. This study provides molecular information that may pave the way for further comparative genomics and functional studies involving Chromobacterium-related isolates and improves our understanding of the global genomic diversity of Chromobacterium species.

16.
Diabetol Metab Syndr ; 9: 62, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28814977

RESUMO

AIMS: To describe the abundance of major phyla and some genera in the gut microbiota of individuals according to dietary habits and examine their associations with inflammatory markers, insulin resistance, and cardiovascular risk profile. METHODS: A total of 268 non-diabetic individuals were stratified into groups of dietary types (strict vegetarians, lacto-ovo-vegetarians, and omnivores). The taxonomic composition and phylogenetic structure of the microbiota were obtained through the analysis of the 16S rRNA gene. Samples were clustered into operational taxonomic units at 97% similarity using GreenGenes 13.5 database. Clinical, biochemical, and circulating inflammatory markers were compared by ANOVA or Kruskal-Wallis test. RESULTS: The sample (54.2% women, mean age 49.5 years) was composed of 66 strict vegetarians, 102 lacto-ovo-vegetarians and 100 omnivores. Considering the entire sample, the greatest abundant phyla were Firmicutes (40.7 ± 15.9%) and Bacteroidetes (39.5 ± 19.9%), and no difference in abundances was found between individuals with normal and excess weight. Stratifying by dietary types, the proportion of Firmicutes was lower and of Bacteroidetes was higher in strict vegetarians when compared to lacto-ovo-vegetarians and omnivores. At the genus level, strict vegetarians had a higher Prevotella abundance and Prevotella/Bacteroides ratio than the other groups. They also had a lower proportion of Faecalibacterium than lacto-ovo-vegetarians, and both vegetarian groups had higher proportions than did omnivores. Succinivibrio and Halomonas from the Proteobacteria phylum were overrepresented in omnivores. The omnivorous group showed higher values of anthropometric data, insulin, HOMA-IR, and a worse lipid profile. Inflammatory markers exhibited a gradual and significant increase from the vegetarians and lacto-ovo-vegetarians to the omnivorous group. CONCLUSIONS: There are differences in gut microbiota composition of individuals with distinct dietary habits, who differ according to their inflammatory and metabolic profiles. Based on the findings relative to bacteria abundances and on their recognized actions in the metabolism, we suggest that exposure to animal foods may favor an intestinal environment which could trigger systemic inflammation and insulin resistance-dependent metabolic disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA